Abstract

Electroencephalography (EEG) signals are gaining popularity in Brain-Computer Interface (BCI)-based rehabilitation and neural engineering applications thanks to their portability and availability. Inevitably, the sensory electrodes on the entire scalp would collect signals irrelevant to the particular BCI task, increasing the risks of overfitting in machine learning-based predictions. While this issue is being addressed by scaling up the EEG datasets and handcrafting the complex predictive models, this also leads to increased computation costs. Moreover, the model trained for one set of subjects cannot easily be adapted to other sets due to inter-subject variability, which creates even higher over-fitting risks. Meanwhile, despite previous studies using either convolutional neural networks (CNNs) or graph neural networks (GNNs) to determine spatial correlations between brain regions, they fail to capture brain functional connectivity beyond physical proximity. To this end, we propose 1) removing task-irrelevant noises instead of merely complicating models; 2) extracting subject-invariant discriminative EEG encodings, by taking functional connectivity into account. Specifically, we construct a task-adaptive graph representation of the brain network based on topological functional connectivity rather than distance-based connections. Further, non-contributory EEG channels are excluded by selecting only functional regions relevant to the corresponding intention. We empirically show that the proposed approach outperforms the state-of-the-art, with around 1% and 11% improvements over CNN-based and GNN-based models, on performing motor imagery predictions. Also, the task-adaptive channel selection demonstrates similar predictive performance with only 20% of raw EEG data, suggesting a possible shift in direction for future works other than simply scaling up the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.