Abstract

While manual total knee arthroplasty (MTKA) has demonstrated excellent clinical results, occasionally intraoperative damage to soft tissues can occur. Robotic-arm assisted technology is designed to constrain a sawblade in a haptic zone to help ensure that only the desired bone cuts are made. The objective of this cadaver study was to quantify the extent of soft tissue damage sustained during TKA through a robotic-arm assisted (RATKA) haptically guided approach and conventional MTKA approach. Four surgeons each prepared 3 RATKA and 3 MTKA specimens for cruciate retaining TKAs. RATKA was performed on one knee, with MTKA on the other. Postoperatively, 2 additional blinded surgeons, assessed and graded damage to 14 key anatomic structures. A Kruskal-Wallis hypothesis test was performed to assess for statistical differences of soft tissue damages between RATKA and MTKA cases. A p-value <0.05 was used as the threshold for statistical significance, and p-values were adjusted for ties. Significantly less damage occurred to the PCL in the RATKA than the MTKA specimens (p<0.0001). RATKA specimens had less damage to the dMCL (p=.149), ITB (p=0.580), popliteus (p=0.248), and patellar ligament (p=0.317). The results of this study indicate that RATKA may result in less soft-tissue damage than MTKA, especially to the PCL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call