Abstract

Summary This paper considers the robustness of a feedback connection of a known linear parameter varying system and a perturbation. A sufficient condition is derived to bound the worst-case gain and ensure robust asymptotic stability. The input/output behavior of the perturbation is described by multiple integral quadratic constraints (IQCs). The analysis condition is formulated as a dissipation inequality. The standard approach requires a non-negative definite storage function and the use of ‘hard’ IQCs. The term ‘hard’ means that the IQCs can be specified as time-domain integral constraints that hold over all finite horizons. The main result demonstrates that the dissipation inequality condition can be formulated requiring neither a non-negative storage function nor hard IQCs. A key insight used to prove this result is that the multiple IQCs, when combined, contain hidden stored energy. This result can lead to less conservative robustness bounds. Two simple examples are presented to demonstrate this fact. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.