Abstract

Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer’s disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer’s disease patients perform poorly on both real space and computerized cued (allothetic) or uncued (idiothetic) recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze), and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer’s disease.

Highlights

  • Alzheimer’s disease results in cognitive impairment, including deficits in memory and spatial navigation [1,2]

  • These results demonstrate that impaired idiothetic navigation is directly attributable to the loss of cholinergic neurons of the basal forebrain

  • To test the animals’ ability to navigate they were subjected to an idiothetic version of the passive place avoidance test in which all extramaze cues were removed

Read more

Summary

Introduction

Alzheimer’s disease results in cognitive impairment, including deficits in memory and spatial navigation [1,2]. Patients with Alzheimer’s disease or the prodromal stage of the condition, amnesic mild cognitive impairment (MCI), have been shown to perform poorly on both real space and computerized cued (allothetic) or uncued (idiothetic) navigation tasks [5,6,7,8]. We found that mice with a basal forebrain lesion displayed very disorganized behaviour in a passive avoidance navigation task lacking extramaze cues, but performed no differently from control animals on a range of other tests including contextual conditioning and working spatial memory. These results demonstrate that impaired idiothetic navigation is directly attributable to the loss of cholinergic neurons of the basal forebrain

Methods
Results
Findings
Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call