Abstract

Proteinase activated receptor 2 (PAR-2) is expressed by many neurons in the colon, including primary afferent neurons that co-express transient receptor potential vanilloid 1 (TRPV1). Activation of PAR-2 receptors was previously found to enhance colonic motility, increase secretion and produce hypersensitivity to mechanical stimuli. This study examined the functional role of TRPV1/PAR-2 expressing neurons that innervate the colon by lesioning TRPV1 bearing neurons with the highly selective and potent TRPV1 agonist resiniferatoxin. Colonic motility in response to PAR-2 activation was evaluated in vitro using isolated segments of descending colon and in vivo using manometry. Colonic mechanical nociceptive thresholds were measured using colorectal distension. Transient receptor potential vanilloid 1 expressing neurons were selectively lesioned with resiniferatoxin. In vitro, the PAR-2 agonists, trypsin and SLIGRL did not alter contractions of colon segments when applied alone, however, the agents enhanced acetylcholine stimulated contraction. In vivo, PAR-2 agonists administered intraluminally induced contractions of the colon and produced hypersensitivity to colorectal distention. The PAR-2 agonist enhancement of colonic contraction was eliminated when TRPV1 expressing neurons were lesioned with resiniferatoxin, but the PAR-2 agonist induced hypersensitivity remained in the lesioned animals. Our findings indicate that TRPV1/PAR-2 expressing primary afferent neurons mediate an extrinsic motor reflex pathway in the colon. These data, coupled with our previous studies, also indicate that the recently described colospinal afferent neurons are nociceptive, suggesting that these neurons may be useful targets for the pharmacological control of pain in diseases such as irritable bowel syndrome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.