Abstract

Alcohol has a profound effect on sleep. However, neuronal substrates mediating sleep-promoting effects of alcohol are unknown. Since the basal forebrain (BF) cholinergic neurons are implicated in the homeostatic regulation of sleep, we hypothesized that the BF cholinergic neurons may have an important role in sleepiness observed after alcohol consumption. 192-IgG-saporin (bilateral BF infusions) was used to selectively lesion BF cholinergic neurons in adult male Sprague-Dawley rats. Standard surgical procedures were used to implant sleep recording electrodes or microdialysis guide cannulas. The first experiment used between-group design [lesion and sham (controls)] and examined effects of BF cholinergic neuronal lesions on alcohol (3g/Kg; ig) induced sleep promotion. The second experiment used within-group design [lesion (ipsilateral BF) and sham (controls; contralateral BF) in same animal] and local reverse microdialysis infusion of alcohol (300mM) to examine the effects of cholinergic neuronal lesions on extracellular adenosine in the BF. Alcohol had a robust sleep promoting effect in controls as evidenced by a significant reduction in sleep onset latency and wakefulness; non-rapid eye movement sleep was significantly increased. No such alcohol-induced sleep promotion was observed in lesioned rats with significantly fewer BF cholinergic neurons. Rapid eye movement sleep was minimally affected. Adenosine release was significantly reduced following local infusion of alcohol on the lesion side, with significantly fewer cholinergic neurons as compared with the control side. Based on these results, we suggest that alcohol promotes sleep by increasing extracellular adenosine via its action on cholinergic neurons of the BF. Read the Editorial Highlight for this article on page 620.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call