Abstract

Optical coherence tomography (OCT) is an emerging imaging tool in healthcare with common applications in ophthalmology for the detection of retinal diseases and in dentistry for the early detection of tooth decay. Speckle noise is ubiquitous in OCT images, which can hinder diagnosis by clinicians. In this paper, a region-based, deep learning framework for the detection of anomalies is proposed for OCT-acquired images. The core of the framework is Transformer-Enhanced Detection (TED), which includes attention gates (AGs) to ensure focus is placed on the foreground while identifying and removing noise artifacts as anomalies. TED was designed to detect the different types of anomalies commonly present in OCT images for diagnostic purposes and thus aid clinical interpretation. Extensive quantitative evaluations were performed to measure the performance of TED against current, widely known, deep learning detection algorithms. Three different datasets were tested: two dental and one CT (hosting scans of lung nodules, livers, etc.). The results showed that the approach verifiably detected tooth decay and numerous lesions across two modalities, achieving superior performance compared to several well-known algorithms. The proposed method improved the accuracy of detection by 16-22% and the Intersection over Union (IOU) by 10% for both dentistry datasets. For the CT dataset, the performance metrics were similarly improved by 9% and 20%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.