Abstract

Abstract Lesch-Nyhan Disease (LND) is a rare X-linked recessive metabolic and neurological syndrome due to the deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT). Besides its well known “housekeeping” function this purine salvage enzyme has revealed an unexpected role in neurodevelopment, unveiled by the peculiar neurological symptoms flanking hyperuricemia in LND: dystonia, choreoathetosis, compulsive self-injurious behaviour. Several lines of research have tried to find the molecular basis for the neurological phenotype after the disease was first described in 1964. Dopaminergic deficit was then found to underlie the neurologic symptoms but the aetiology for such alteration seemed inexplicable. A number of detailed studies in the last 50 years addressed the genetic, metabolic, cognitive, behavioral and anatomical features of this disease. Initial investigations seeked for accumulation of toxic metabolites or depletion of essential molecules to disclose potential connections between purine recycling and neuronal dysfunction. In the last two decades sophisticated biotechnological methods were used for a deeper insight in the genetic and molecular aspects, unveiling a network of combined gene dysregulations in neuronal development and differentiation producing neurotransmission defects. These studies, conducted with several different approaches, allowed consistent steps forward, demonstrating transcriptional aberrations affecting different metabolic pathways in HPRT deficiency, yet leaving many questions still unsolved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call