Abstract

Pressure–volume isotherms have been determined for three heterogeneous ‘water–zeolite’ systems. The first two concern hydrophobic purely siliceous zeolites: silicalite-1 (F −) and zeolite β (F −); the third comprises a more hydrophilic commercial zeolite of the type ZSM-5. The P– V diagram for the water–silicalite-1 (F −) system is characterized by a plateau corresponding to the intrusion of water inside the pores of the solid. During the release the phenomenon is reversible. This system, which is able to accumulate and restore superficial energy, constitutes a molecular spring. For zeolite β, the P– V curve displays a plateau during the compression, but during the release, the phenomenon is not reversible. In that case, the system absorbs mechanical energy and acts as a bumper. The third system, based on the more hydrophilic ZSM-5 zeolite shows a linear isotherm without any plateau. These results open new applications perspectives in the field of the energetics for hydrophobic zeolites in contact with water. To cite this article: V. Eroshenko et al., C. R. Physique 3 (2002) 111–119

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.