Abstract
Jet noise is amplified at low frequencies when the jet is installed under a wing. Serrations are designed at the nozzle exit to mitigate installation noise generation. In this paper, hybrid large-eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) is performed to investigate the serration effects on installed jet flows and acoustics in an industrially relevant configuration: an ultra-high-bypass-ratio aeroengine mounted under a three-dimensional wing. The results show that the serrations are able to weaken jet and wing interactions, and consequently reduce far-field installation noise. The noise reduction mechanisms have been sought through the quadrupole sources in the jet plume and evanescent pressure wave scattering at the wing trailing edge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.