Abstract

The attention paid to endocriniens modulators for purpose micropolluants (endocrine disrupters) has been increasingly studied these last years particularly on animals. The results of this study raised big concerns from Doctors and Biologists on the eventual risks human health can face. Indeed, endocrine systems of the body play an essential and pervasive role in both the short- and long-term regulation of metabolic processes. Nutritional, behavioural, and reproductive processes are intricately regulated by endocrine systems, as are growth (including bone growth/remodelling), gut, cardiovascular, and kidney function and responses to all forms of stress. Disorders of any of the endocrine system, involving both over- and under-active hormone secretion, result inevitably in disease, the effects of which may extend to many different organs and functions and are often debilitating or life-threatening. Viewed from this general perspective, the threat posed from environmental chemicals with endocrine activity (either agonist or antagonistic) is potentially serious. However, the fact that humans and wildlife are exposed to such chemicals does not necessarily mean that clinically manifest disturbance of the relevant endocrine system will result, because much depends on the level and duration of exposure and on the timing of exposure. Indeed, a large numbers of environmental estrogens are suspected of altering human health as well as the marine ecosystem balance. The objective of this review is to study the different molecular mechanisms of these xenoestrogenes micropolluants, in order to emphasize their potential risk and to present some of the different experimental methods for their detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.