Abstract

High-order, wall-resolved large eddy simulations (LES) using the spectral element method (SEM) were performed to investigate the gas-exchange process inside a laboratory-scale internal combustion engine (ICE) and study the in-cylinder flow evolution. Using a stabilizing filter, over 30 engine cycles were simulated to generate data for statistical analysis, which demonstrated good agreement in the mean and root mean-squared (rms) phase-averaged velocity fields across three different filter parameter/resolution combinations. The large scale flow motion was characterized during each stage of the engine cycle. Tumble ratio profiles indicate peak values during the intake stroke which decay during compression and are almost non-existent thereafter. The tumble breakdown process is quantified by investigating the evolution of the mean and turbulent kinetic energy over the full cycle, and its effect on the evolution of the momentum and thermal boundary layers is discussed. Algorithmic advances to the computational fluid dynamics (CFD) solver Nek5000, employed in the current study, resulted in significant reduction in the wall-time needed for the simulation of each cycle for mesh resolutions of at least an order of magnitude higher than the current state-of-the-art.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.