Abstract

In this study, Large Eddy Simulation (LES) has been used to predict the flow, mixing and combustion in both a single burner laboratory gas turbine combustor and in an 18 burner annular combustor, having identical cross sections. The LES results for the single burner laboratory combustor are compared with experimental data for a laboratory model of this combustor, and with other LES predictions, with good agreement. An explicit finite volume based LES model, using the mixed subgrid model together with a partially stirred reactor model for the turbulence chemistry interactions, is used. For the annular combustor, with the swirlers parameterized by jet inflow boundary conditions, we have investigated the influence of the a-priori unknown combustor exit impedance, the influence of the swirler characteristics and the fuel type. The combustion chemistry of methane–air and n-decane–air combustion is modeled by a two-step reaction mechanism, whereas NOx is separately modeled with a one-step mechanism. No experimental data exists for the annular combustor, but these results are compared with the single burner LES and experimental results available. The combustor exit impedance, the swirler- and fuel characteristics all seem to influence the combusting flow through the acoustics of the annular combustor. To examine this in greater detail time-series and eigenmodes of the combustor flow fields are analyzed and comparisons are made also with results from conventional thermoacoustic eigenmode analysis, with reasonable agreement. The flow and pressure distributions in the annular combustor are described in some detail and the mechanisms by which the burners interact are outlined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.