Abstract

Common combustion chambers often exhibit turbulent flames propagating in partially-premixed mixtures. This propagation is generally governed by aerodynamics, unsteady mixing and chemical processes and may also be affected by conductive heat losses when the reactive zone develops close to the burner lips. The Filtered TAbulated Chemistry for Large Eddy Simulation (F-TACLES) model has been recently developed to include tabulated chemistry in Large Eddy Simulation (LES) of adiabatic stratified flames in flamelet regimes. The present article proposes a modeling approach to account for both differential diffusion and non-adiabatic effects on flame consumption speed following the F-TACLES formalism. The adiabatic F-TACLES model is first detailed using a generalized formalism for diffusive fluxes allowing either to account for differential diffusion or not. The F-TACLES model is then extended to non-adiabatic situations. A correction factor based on the non-adiabatic consumption rate is introduced to recover a realistic filtered flame consumption speed. The objective is here to tackle flame stabilization mechanisms when heat losses affect the reaction zone. The proposed approach is validated through the simulation of the unconfined stratified turbulent jet flame TSF-A for which stabilization process is affected by heat losses. Five simulations are performed for both adiabatic and non-adiabatic flow conditions comparing unity Lewis number and complex diffusion assumptions. The adiabatic F-TACLES model predicts a flame anchored at the burner lip disagreeing with experimental data. The non-adiabatic simulation exhibits local extinction due to heat losses near the burner exit. The flame is then lifted improving the comparison with experiments. Results also show a significant impact of molecular diffusion model on both mean flame consumption rate and angle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.