Abstract

The paper presents the results of the application of large-eddy simulation (LES) to turbulent channel flow with a varying pressure gradient obtained by an appropriately specified shape of one of the walls. The main objective of the paper is to assess various subgrid scale (SGS) models implemented in two different codes as well as to assess the sensitivity of the predictive accuracy to grid resolution. Additionally, the role of SGS viscosity, controlled by a constant parameter of the SGS model, was investigated. The simulations were performed with inlet conditions corresponding to two Reynolds numbers: and . The consistency and the accuracy of simulations are evaluated using direct numerical simulation (DNS) results. It is demonstrated that all SGS models require a comparable minimum grid refinement in order to capture accurately the recirculation region. Such a test case with a reversal flow, where the turbulence transport is dictated by the dynamics of the large-scale eddies, is well suited to demonstrate the predictive features of the LES technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.