Abstract

Purpose This study aims to numerically investigate the flow features and mixing/combustion efficiencies in a turbulent reacting jet in cross-flow by a hybrid Eulerian-Lagrangian methodology. Design/methodology/approach A high-order hybrid solver is employed where, the velocity field is obtained by solving the Eulerian filtered compressible transport equations while the species are simulated by using the filtered mass density function (FMDF) method. Findings The main features of a reacting JICF flame are reproduced by the large-eddy simulation (LES)/FMDF method. The computed mean and root-mean-square values of velocity and mean temperature field are in good agreement with experimental data. Reacting JICF’s with different momentum ratios are considered. The jet penetrates deeper for higher momentum ratios. Mixing and combustion efficiency are improved by increasing the momentum ratio. Originality/value The authors investigate the flow and combustion characteristics in subsonic reacting JICFs for which very limited studies are reported in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call