Abstract

This paper reports on the prediction of the unsteady hydrodynamic forces that act on a floating Tension-Leg Platform (TLP) due to the action of a steady current. The results were obtained by solving the three-dimensional, time-dependent form of the equations governing conservation of mass and momentum. Movement of the free surface was tracked using the volume of fluid algorithm. The effects of turbulence were accounted for using two very different approaches: Large-Eddy Simulations (LES) and Unsteady Reynolds-Averaged Navier–Stokes (URANS). The latter approach utilized a two-equation turbulence closure that has been extended to capture the occurrence and consequences of vortex shedding from bluff bodies. The primary objective of the work was to explore the merits and de-merits of each modeling approach when applied to a large-scale structure of the type frequently encountered in practice. The test case chosen for this purposes of this assessment was the case of a conventional TLP in steady current at Reynolds numbers (based on column diameter) of 7.5×10 6 and 7.5×10 7. These values are representative of those encountered in deep-sea operations. Experiments and field observations have indicated that the resulting flows exhibit a number of complicated features due to the interactions between the shed vortices and the various structural components of the TLP. Many but not all of these features were captured by the present computations. In addition to a critical assessment of the two modeling approaches, the paper reports on a number of practical experiences gained in the course of conducting this study, including an assessment of the importance of allowing for the movement of the free surface (as opposed to adopting the usual solid-lid approximation) and an illustration of the effects of the current's angle of incidence on the computed hydrodynamic loads.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call