Abstract
Numerical studies on two large-scale compartment buoyant fires were performed utilizing a fully coupled Large Eddy Simulation (LES) and strained laminar flamelet combustion model, extended from single-step to multistep chemical reaction. Two Subgrid-Scaled (SGS) turbulent models, Smagorinsky and WALE, were examined for center and corner fires. Compared with the experimental and existing numerical data, the WALE model with a multistep chemical reaction gave the best prediction for the upper hot layer and doorway gas temperatures. Specie concentrations including oxygen, carbon dioxide, and carbon monoxide were also found to compare well against the experimental measurements when the WALE model with a multistep chemical reaction was adopted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.