Abstract

BackgroundLeptospira are shed into the environment via urine of infected animals. Rivers are thought to be an important risk factor for transmission to humans, though much is unknown about the types of environment or characteristics that favor survival. To address this, we screened for Leptospira DNA in two rivers in rural Ecuador where Leptospirosis is endemic.ResultsWe collected 112 longitudinal samples and recorded pH, temperature, river depth, precipitation, and dissolved oxygen. We also performed a series of three experiments designed to provide insight into Leptospira presence in the soil. In the first soil experiment, we characterized prevalence and co-occurrence of Leptospira with other bacterial taxa in the soil at dispersed sites along the rivers (n = 64). In the second soil experiment, we collected 24 river samples and 48 soil samples at three points along eight transects to compare the likelihood of finding Leptospira in the river and on the shore at different distances from the river. In a third experiment, we tested whether Leptospira presence is associated with soil moisture by collecting 25 soil samples from two different sites.In our river experiment, we found pathogenic Leptospira in only 4 (3.7%) of samples. In contrast, pathogenic Leptospira species were found in 22% of shore soil at dispersed sites, 16.7% of soil samples (compared to 4.2% of river samples) in the transects, and 40% of soil samples to test for associations with soil moisture.ConclusionsOur data are limited to two sites in a highly endemic area, but the scarcity of Leptospira DNA in the river is not consistent with the widespread contention of the importance of river water for leptospirosis transmission. While Leptospira may be shed directly into the river, onto the shores, or washed into the river from more remote sites, massive dilution and limited persistence in rivers may reduce the environmental load and therefore, the epidemiological significance of such sources. It is also possible that transmission may occur more frequently on shores where people are liable to be barefoot. Molecular studies that further explore the role of rivers and water bodies in the epidemiology of leptospirosis are needed.

Highlights

  • Leptospira are shed into the environment via urine of infected animals

  • The epidemiology of leptospirosis and ecology of Leptospira is complex given the genetic diversity in the genus Leptospira

  • Performance of the assay for detecting saprophytic Leptospira The Sapro assay appears to be capable of detecting Leptospira species within the saprophytic clade

Read more

Summary

Introduction

Leptospira are shed into the environment via urine of infected animals. Rivers are thought to be an important risk factor for transmission to humans, though much is unknown about the types of environment or characteristics that favor survival. Survival of pathogenic Leptospira in the environment, after being shed in the urine of an infected animal, is critical for transmission to another host. Many human cases have been statistically attributed to river or lake exposure, suggesting high survival in larger bodies of water, causal evidence is lacking and pathogenic leptospires have rarely been detected in these environments [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]. Given the perceived epidemiological importance of rivers, investigating the presence and survival of leptospires in river water and soil bordering rivers may better define where and how transmission in a riverine environment occurs

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call