Abstract

Following previous work, we identify a symmetry S_nat that generalizes the concept of custodial symmetry, keeping under control deviations from the Standard Model (SM). To realize S_nat linearly, the space of gauge fields has to be extended. Covariant constraints formulated in terms of spurions reduce S_nat back to SU(2)_L x U(1)_Y. This allows for a covariant introduction of explicit S_nat-breaking parameters. We assume that S_nat is at play in a theory of electroweak symmetry-breaking without a light Higgs particle. We describe some consequences of this assumption, using a non-decoupling effective theory in which the loop expansion procedure is based on both momentum and spurion power counting, as in Chiral Perturbation Theory. A hierarchy of lepton-number violating effects follows. Leading corrections to the SM are non-oblique. The effective theory includes stable light right-handed neutrinos, with an unbroken Z_2 symmetry forbidding neutrino Dirac masses. nu_R contribution to dark matter places bounds on their masses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.