Abstract

We study the impact of effective thermal masses and widths on resonant leptogenesis. We identify two distinct possibilities which we refer to as crossing and runaway regimes. In the runaway regime the mass difference grows monotonously with temperature, whereas it initially decreases in the crossing regime, such that the effective masses become equal at some temperature. Following the conventional logic the source of the asymmetry would vanish in the latter case. Using non-equilibrium quantum field theory, we analytically demonstrate that the vanishing of the difference of the effective masses does however neither imply a suppression nor a strong enhancement of the source for the lepton asymmetry. In the vicinity of the crossing point the asymmetry calculated in an (improved) Boltzmann limit develops a spurious peak, which signals the breakdown of the quasiparticle approximation. In the exact result this spurious enhancement is compensated by coherent transitions between the two mass shells. Despite the breakdown of the quasiparticle approximation off-shell contributions remain negligibly small even at the crossing point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.