Abstract

Many extensions of the Standard Model predict super-weakly interacting particles, which typically have to decay before Big Bang Nucleosynthesis (BBN). The entropy produced in the decays may help to reconcile thermal leptogenesis and BBN in scenarios with gravitino dark matter, which is usually difficult due to late decays of the next-to-lightest supersymmetric particle (NLSP) spoiling the predictions of BBN. We study this possibility for a general neutralino NLSP. We elaborate general properties of the scenario and strong constraints on the entropy-producing particle. As an example, we consider the saxion from the axion multiplet and show that, while enabling a solution of the strong CP problem, it can also produce a suitable amount of entropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.