Abstract
For Leptogenesis based on the type-I seesaw mechanism, we present a systematic calculation of lepton-number violating and purely flavoured asymmetries within nonequilibrium Quantum Field Theory. We show that sterile neutrinos with non-degenerate masses in the GeV range can explain the baryon asymmetry of the Universe via flavoured Leptogenesis. This is possible due to the interplay of thermal and flavour effects. Our approach clarifies the relation between Leptogenesis from the oscillations of sterile neutrinos and the more commonly studied scenarios from decays and inverse decays. We explain why lower mass bounds for non-degenerate sterile neutrinos derived for Leptogenesis from out-of-equilibrium decays do not apply to flavoured Leptogenesis with GeV-scale neutrinos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.