Abstract

Mice lacking either bombesin receptor subtype (BRS)-3 or gastrin-releasing peptide receptor (GRP-R) exhibit feeding abnormalities. However, it is unclear how these receptors are associated with feeding regulation. In BRS-3-deficient mice, we found hyperphagia, subsequent hyperleptinemia, and brain leptin resistance that occurred after the onset of obesity. To explore the cause of this phenomenon, we examined changes in feeding responses to appetite-related neuropeptides in BRS-3-deficient, GRP-R-deficient, and wild-type littermate mice. Among orexigenic neuropeptides, the hyperphagic response to melanin-concentrating hormone (MCH) was significantly enhanced in BRS-3-deficient mice but not in GRP-R-deficient mice. In addition, the levels of MCH-R and prepro-MCH mRNAs in the hypothalamus of BRS-3-deficient mice were significantly more elevated than those of wild-type littermates. There was no significant difference in feeding between BRS-3-deficient and wild-type littermate mice after treatment with bombesin (BN), although the hypophagic response to low-dose BN was significantly suppressed in the GRP-R-deficient mice. These results suggest that upregulation of MCH-R and MCH triggers hyperphagia in BRS-3-deficient mice. From these results, we assume that the BRS-3 gene deletion upsets the mechanism by which leptin decreases the expression of MCH-R and that this effect may be mediated through neural networks independent of BN-related peptides such as GRP-R.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.