Abstract

The role of leptin in neonatal growth and bone metabolism has been investigated, but not simultaneously. The objectives of this study were to determine if leptin relates to bone mass during rapid growth; if consumption of maternal milk is related to elevated circulating concentrations of leptin resulting in higher fat mass; and if glucocorticoids result in higher fat mass and reduced bone mass due to elevated leptin. Thirty-two piglets were randomized to either a suckling or milk substitute plus either dexamethasone (DEX) or placebo injection for 15 days beginning at 5 days of age. Milk and blood samples were obtained at baseline, and after 15 days, blood was sampled again for measurement of leptin and bone biochemistry. Weight at baseline plus weight and length after 15 days were recorded, followed by measurement of whole body bone mineral content, bone area, and fat mass using dual energy x-ray absorptiometry. At baseline, plasma leptin was elevated in suckled piglets. Piglets that suckled had elevated fat mass as did those who received DEX. However, DEX resulted in suppressed weight and length, bone mass, and bone metabolism. Leptin was similar among groups after the 15 days. After accounting for body size and treatment effects, piglet plasma leptin was predictive of bone and fat mass. Leptin circulating early postnatally is linked to body composition, specifically fat and bone mass. Elevations in fat mass and reductions in bone mass observed after 15 days of DEX treatment are not related to leptin metabolism. Both human and porcine neonates share similar characteristics with respect to relationships of leptin with fat and bone mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call