Abstract

Leptin is a pleiotropic adipocyte-derived cytokine used in hypothalamic regulation of body weight and modulation of immune response by stimulating T cells, macrophages and neutrophils. Leptin has been shown to be an eosinophil survival factor. We examined the immunopathological mechanisms for the activation of human eosinophils from healthy volunteers by leptin in allergic inflammation. Adhesion molecules, cytokines and cell migration were assessed by flow cytometry, ELISA and Boyden chamber assay, respectively. Intracellular signaling molecules were investigated by membrane array and Western blot. Leptin could up-regulate cell surface expression of adhesion molecule ICAM-1 and CD18 but suppress ICAM-3 and L-selectin on eosinophils. Leptin could also stimulate the chemokinesis of eosinophils, and induce the release of inflammatory cytokines IL-1beta and IL-6, and chemokines IL-8, growth-related oncogene-alpha and MCP-1. We found that leptin-mediated induction of adhesion molecules, release of cytokines and chemokines, and chemokinesis were differentially regulated by the activation of ERK, p38 MAPK and NF-kappaB. In view of the above results and elevated production of leptin in patients with allergic diseases such as atopic asthma and atopic dermatitis, leptin could play crucial immunopathophysiological roles in allergic inflammation by activation of eosinophils via differential intracellular signaling cascades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.