Abstract

The molecular signaling events by which leptin exerts its functions in vivo are not well delineated. Here, we show a novel leptin signaling mechanism that requires phosphoinositide 3-kinase (PI 3-kinase)-dependent activation of cyclic nucleotide phosphodiesterase 3B (PDE3B) and subsequent suppression of cAMP levels. In pancreatic beta cells, leptin causes the activation of PDE3B, which leads to marked inhibition of glucagon-like peptide-1-stimulated insulin secretion. The effect of leptin is abolished when insulin secretion is induced with cAMP analogues that cannot be hydrolyzed by PDE3B. Selective inhibitors of PDE3B and PI 3-kinase completely prevent the leptin effect on insulin secretion and cAMP accumulation. The results demonstrate that one of the physiological effects of leptin, suppression of insulin secretion, is mediated through activation of PDE3B and suggest PDE3B as a mediator of leptin action in other tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.