Abstract

Obesity is a major risk factor for the development of cardiovascular disease. Emerging evidence indicates that leptin, a protein encoded by the obesity gene, is linked with cardiac hypertrophy in obese humans and directly induces cardiomyocyte hypertrophy in vitro. However, the mechanisms by which leptin induces cardiomyocyte hypertrophy are poorly understood. This study investigated how leptin contributes to cardiomyocyte hypertrophy. Cultured neonatal rat cardiomyocytes were used to evaluate the effects of leptin on hypertrophy. Both endothelin-1 (ET-1) and reactive oxygen species (ROS) levels were elevated in a concentration-dependent manner in cardiomyocytes treated with leptin for 4 hours compared with those cells without leptin treatment. ET-1 stimulated ROS production in a concentration-dependent manner in cardiomyocytes. The augmentation of ROS levels in cardiomyocytes treated with both leptin and ET-1 was reversed by a selective ET(A) receptor antagonist, ABT-627, and catalase, a hydrogen peroxide-decomposing enzyme. After treatment for 72 hours, leptin or ET-1 concentration-dependently increased total RNA levels, cell surface areas, and protein synthesis in cardiomyocytes, all of which were significantly inhibited by ABT-627 or catalase treatment. These findings indicate that leptin elevates ET-1 and ROS levels, resulting in hypertrophy of cultured neonatal rat cardiac myocytes. The ET-1-ET(A)-ROS pathway may be involved in cardiomyocyte hypertrophy induced by leptin. ET(A) receptor antagonists and antioxidant therapy may provide an effective means of ameliorating cardiac dysfunction in obese humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.