Abstract

Phospholipase D (PLD) has been implicated in various cellular processes including membrane degradation, vesicular trafficking and signal transduction. Previously, we described a PLD gene family in tomato (Lycopersicon esculentum) and showed that expression of one of these genes, LePLDbeta1, was induced by treatment with the fungal elicitor xylanase. To further investigate the function of this PLD, a gene-specific RNAi construct was used to knock down levels of LePLDbeta1 transcript in suspension-cultured tomato cells. Silenced cells exhibited a strong decrease in xylanase-induced PLD activity and responded to xylanase treatment with a disproportionate oxidative burst. Furthermore, LePLDbeta1-silenced cell-suspension cultures were found to have increased polyphenol oxidase activity, to secrete less of the beta-d-xylosidase LeXYL2 and to secrete and express more of the xyloglucan-specific endoglucanase inhibitor protein XEGIP. Using an LePLDbeta1-green fluorescent protein (GFP) fusion protein for confocal laser scanning microscopy-mediated localization studies, untreated cells displayed a cytosolic localization, whereas treatment with xylanase induced relocalization to punctuate structures within the cytosol. Possible functions for PLDbeta in plant-pathogen interactions are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.