Abstract

Lepidium meyenii Walp (red maca) is a high Andean plant cultivated since the Incas and has innumerable therapeutic properties. The study aims to identify its phytochemical composition using UHPLC-ESI-MS/MS, and evaluate its effects on acrylamide-induced oxidative stress. The lyophilized aqueous extract of red maca (LAqE-RM) was orally administered in doses of 1 and 2g/kg body weight for 4weeks. Malondialdehyde (MDA) levels in erythrocytes, brain, and liver, as well as hepatic levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined. Administration of acrylamide for 2 and 4weeks significantly increased (p < 0.001) MDA levels in erythrocytes, brain, and liver. However, LAqE-RM prevented (p < 0.001) an increase in MDA levels in all tissues studied. Likewise, the groups treated with LAqE-RM presented significantly (p < 0.001) lower levels of ALT and AST compared to the control. Treatment with LAqE-RM ameliorated the acrylamide-induced oxidative stress by reducing MDA levels in erythrocytes, brain, and liver and by lowering liver levels of ALT and AST in a dose-dependent manner. Twenty-five secondary metabolites were identified and characterized from LAqE-RM based on UHPLC mass spectrophotometry. These include carbolines, alkamides, fatty acids, and macamides, which are probably involved in their antioxidant protective role.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call