Abstract

This paper continues a series of publications on the shortwave diffraction of the plane wave on prolate bodies of revolution with axial symmetry in the Neumann problem. The approach, which is based on the Leontovich–Fock parabolic equation method for the two parameter asymptotic expansion of the solution, is briefly described. Two correction terms are found for the Fock’s main integral term of the solution expansion in the boundary layer. This solution can be continuously transformed into the ray solution in the illuminated zone and decays exponentially in the shadow zone. If the observation point is in the shadow zone near the scatterer, then the wave field can be obtained with the help of residue theory for the integrals of the reflected field, because the incident field does not reach the shadow zone. The obtained residues are necessary for the unique construction of the creeping waves in the boundary layer of the scatterer in the shadow zone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.