Abstract

The fast motion of low earth orbit (LEO) satellite contributes to the geometric diversity, allowing for rapid convergence of precise point positioning (PPP). In this contribution, we investigate the PPP performance of the LEO constellation-augmented full operational capability (FOC) multi-GNSS. We design six LEO constellations with different satellite numbers, orbit altitudes and orbit types, together with the FOC multi-GNSS constellations, and then simulate both the onboard LEO and ground-based observations. The multi-GNSS POD result shows much better orbit accuracy of 3.3, 2.7 and 2.6 cm in radial, along-track and cross-track components, respectively, compared with that of 10.3, 9.2 and 8.9 cm for GPS-only POD. Furthermore, the performance of LEO-augmented multi-GNSS PPP is evaluated. With the augmentation of 60-, 96-, 192- and 288-satellite LEO constellation, the multi-GNSS PPP convergence time can be shortened from 9.6 to 7.0, 3.2, 2.1 and 1.3 min, respectively, in midlatitude region. For LEO-augmented GPS- and BDS-only PPP, the improvement is more significant with the convergence time dramatically shortened by 90% from about 25 to within 3 min with 192- or 288-satellite constellation. The augmentation capability is also found to be associated with station latitude, and the higher latitude, the better performance. To enable about more than 70% significant reduction on convergence time, as well as considering the cost, the 192-satellite LEO constellation scheme is suggested. In terms of orbit altitude, the scheme of 1000 km presents better performance than that of 600 km. As for orbit type, the performances are comparable for polar and sun-synchronous orbits. Additionally, LEO-only PPP can be achieved with the convergence time of about 6.5 min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.