Abstract

Extensive research has shown that the transcription factor CREB has an important role during memory formation. In the present study, we tested a new method for chronic, stable expression of a dominant-negative form of CREB (mCREB) in the dorsal hippocampus using lentiviral vectors. In specific, we tested whether lentivirus-mediated chronic expression of mutant CREB impairs memory for two hippocampus-dependent tasks – place training in the water maze and contextual fear conditioning. Two weeks following intra-hippocampal infusion, experimental (mCREB) and control (LacZ and saline) rats were trained for 30 trials in one session on a place task in a water plus-maze and tested for an additional 30 trials on day 2 and on day 7. On day 8, all rats were trained on a contextual fear conditioning task and tested 24h later. For place learning, there was no difference between treatment groups on day 1, indicating that treatment with the lentiviral vectors did not alter performance or acquisition of the task. In comparisons with controls, mCREB-treated rats were not significantly impaired on day 2, overall, but they showed significant impairment on day 7. Contextual fear memory was impaired in mCREB-infused rats in comparison with controls. At the end of the experiment, total CREB and phosphorylated CREB protein were measured by western blot. Levels of total CREB were increased by approximately 40% among mCREB-treated rats in comparisons with controls, whereas levels of pCREB did not differ between groups, suggesting that the treatment caused significant expression of mCREB. In addition, mCREB infused rats showed a significant reduction in the pCREB to CREB ratio in comparison with controls, suggesting that the memory deficit seen in mCREB rats is most likely due to disruption of gene regulation caused by expression of mutant CREB. Taken together, the present results show that lentivirus expressing mCREB can be used to effectively alter CREB function within the hippocampus and that the treatment impairs memory for hippocampus-dependent tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call