Abstract

The aim of the study was to investigate the potential mechanisms that interferencing of excision repair cross-complementing gene 1 (ERCC1) mediated by lentiviral vector in cisplatin-resistant ovarian cancer SKOV3/DDP cells. The human platinum-resistant ovarian carcinoma cell line SKOV3/DDP was transfected by pLVX-shRNA lentivirus. Interference efficiency for ERCC1 by lentiviruses transfection was detected by real-time polymerase chain reaction and western blot assay. CCK-8 assay was used for cell proliferation on cell resistance after transfection with ERCC1. Effects of cell apoptosis and cell cycles were detected by flow cytometry. The expression levels of ERCC1 were significantly suppressed in SKOV3/DDP cells after stably transfecting with shERCC1-recombinant plasmid. The results of cell viability assay demonstrated that interference with ERCC1 gene increased the sensitivity of SKOV3/DDP cells to cisplatin (p<0.01). ERCC1 gene-specific silencing promoted cell apoptosis of SKOV3/DDP cells (p<0.01) detected by flow cytometry. Cell cycle analysis results showed that the proportion of cells in G1 and S phase decreased, while the proportion of G2 phase cells increased in ERCC1-silencing cells. The differences were statistically significant (p<0.01), which demonstrated that stable interferencing with ERCC1 induced the cells arrest in G2 phase after being treated by DDP and silencing the expression of ERCC1 inhibited cell proliferation by preventing the progression of cell mitosis. ERCC1 gene silencing effectively reversed SKOV3/DDP cell resistance to cisplatin and increased sensitivity to cisplatin resistance in cisplatin-resistant ovarian cancer cells. Interference of ERCC1 promoted the apoptosis of SKOV3/DDP cells and prevented cell mitosis by inducing G0/G1 phase arrest. Thus, ERCC1 could be a potential therapeutic target for the therapy of cisplatin-resistant ovarian cancer and it would provide new ideas for epigenetic therapy of drug-resistant epithelial ovarian cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.