Abstract

An increasing body of evidence has indicated that spinal microglial Toll-like receptor 4 (TLR4) may serve a significant role in the development and maintenance of neuropathic pain (NP). In the present study, experiments were conducted to evaluate the contribution of a tetracycline inducible lentiviral-mediated delivery system for the expression of TLR4 small interfering (si)RNA to NP in rats with chronic constriction injury (CCI). Behavioral tests, including paw withdrawal latency and paw withdrawal threshold, and biochemical analysis of the spinal cord, including western blotting, reverse transcription-quantitative polymerase chain reaction and ELISA, were conducted following CCI to the sciatic nerve. Intrathecal administration of LvOn-si-TLR4 with doxycycline (Dox) attenuated allodynia and hyperalgesia. Biochemical analysis revealed that the mRNA and proteins levels of TLR4 were unregulated following CCI to the sciatic nerve, which was then blocked by intrathecal administration of LvOn-siTLR4 with Dox. The LvOn-siTLR4 was also demonstrated to have no effect on TLR4 or the pain response without Dox, which indicated that the expression of siRNA was Dox-inducible in the lentivirus delivery system. In conclusion, TLR4 may serve a significant role in neuropathy and the results of the present study provide an inducible lentivirus-mediated siRNA against TLR4 that may serve as a potential novel strategy to be applied in gene therapy for NP in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.