Abstract

Fluopyram, a SDH inhibitor fungicide, is widely used in agriculture to control fungi and nematodes. However, fluopyram has been proved toxic that caused damage to organs through oxidative stress. The development of natural extracts that can reduce oxidative damage is a promising method. Lentinan is isolated from Lentinus edodes and has been verified its antioxidant activity. In this study, Caenorhabditis elegans was used to evaluate the protective effects of lentinan against fluopyram-induced toxicity and the possible mechanisms. Results showed that lentinan pretreatment notably increased the survival rate of N2 nematodes by 15.0 % and extended the lifespan by 91.5 %, compared with the fluopyram treatment. Lentinan pretreatment reverted the inhibition of the locomotion and reproduction of C. elegans under the fluopyram stress. In addition, lentinan pretreatment significantly decreased the contents of ROS and MDA in N2 nematodes. Moreover, pretreated with lentinan significantly recovered the decreased activities of CAT, SOD, GST and SDH induced by fluopyram. Lentinan pretreatment enhanced the mRNA levels of daf-16 and skn-1 and their downstream genes in the nematodes compared with the fluopyram group. In daf-16 and skn-1 mutants, the lifespan, ROS and related genes expression were not significantly changed in lentinan pretreatment. Pretreated with lentinan significantly enhanced the fluorescence intensity of SOD-3::GFP and GST-4::GFP, and promoted the nuclear translocation of DAF-16 and SKN-1 under the fluopyram stress. In summary, these findings indicated that lentinan protected C. elegans from fluopyram-induced toxicity via DAF-16 and SKN-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call