Abstract
Development of high photothermal performance and biocompatible nanotherapeutic agents is of great importance for photothermal cancer treatment. In this paper, we have developed lentinan decorated tungsten oxide nanorods (W18O49@LTN NRs) via a mild one-step solvothermal route. Owing to the numerous surface hydroxyl groups of polymer chains, the presence of lentinan layer in the surface of W18O49 NRs lead to good biocompatibility. The lentinan layer also affects the crystal structure of W18O49 and improves near-infrared absorption (~1.7 × 109 M−1 cm−1 at 980 nm), which is two orders of higher than previously reported PEGylated W18O49 nanowires. Even under near-infrared (NIR) laser irradiation at a very low power density of 0.4 W/cm2, the temperature of W18O49@LTN NRs aqueous dispersion (125 μg/mL) could increase by 15.1 °C. The photothermal conversion efficiency of W18O49@LTN NRs reaches 33.86%, which is higher than previously reported WO3−x hierarchical nanostructures (28.1%). Importantly, when cancer cells were treated with W18O49@LTN NRs (200 μg/mL) and 980 nm laser (0.4 W/cm2), a significant photo-induced cell killing behavior was observed. This work demonstrates that W18O49@LTN NRs have the potential for precise cancer treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.