Abstract

Lensless X-ray imaging techniques such as coherent diffraction imaging1,2,3,4,5,6,7,8 and ptychography9,10,11, and Fourier transform holography12,13,14,15,16,17 can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused on transmission geometry, restricting the samples and reciprocal spaces that can be investigated. We report a lensless X-ray technique developed for imaging in Bragg and small-angle scattering geometries, which may also find application in transmission geometries. We demonstrate this by imaging a nanofabricated pseudorandom binary structure in small-angle reflection geometry. The technique can be used with extended objects, places no restriction on sample size, and requires no additional sample masking. The realization of X-ray lensless imaging in reflection geometry opens up the possibility of single-shot imaging of surfaces in thin films, buried interfaces in magnetic multilayers, organic photovoltaic and field-effect transistor devices, or Bragg planes in a single crystal. Many X-ray imaging techniques require transmission geometries, which place severe restrictions on the samples being imaged. Here, a reflection geometry lensless X-ray imaging method is demonstrated. This technique may allow single-shot imaging of surfaces and films such as organic photovoltaic materials and field-effect transistor devices, or Bragg planes in a single crystal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call