Abstract

A principle scheme of a lensless optical processor for synthetic-aperture imaging ladar (SAIL) is proposed. The collected data from SAIL is initially digitally added with a quadratic phase in the range direction. These data are then uploaded on a liquid crystal spatial light modulator to modulate the incident light. The target image is obtained through two-dimensional (2D) free-space Fresnel diffraction. The imaging process is mathematically analyzed using a 2D data-collection equation of strip-mode side-looking SAIL. The design equation, imaging resolutions, and target-image compression ratios are presented. Based on this principle scheme, we construct an experimental optical SAIL processor and present the imaging result of data obtained from one SAIL demonstrator. The optical processor is found to exhibit the flexible property of digital processing, as well as the fast processing capability of optical means, because this optical processor is a lensless system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call