Abstract

We have developed a wide field-of-view lensless in-line holographic microscope (LIHM) capable of acquiring microscopic images with a compact design. In our imaging system, a Ronchi grating was illuminated by a collimated laser beam to generate a Talbot self-imaging grating illumination on the sample, and the in-line holograms were recorded by a CMOS imaging sensor behind the sample. An iterative reconstruction algorithm was then applied to reconstruct the sample image while eliminating the twin-image background that appears in traditional in-line holography. In the algorithm, the dark areas of the illumination grating were used as a known constraint to define the sample support that led to convergence of the iteration. The whole-sample image can be acquired by laterally shifting the grating. We demonstrated the performance of our iteration algorithm and imaging system by successfully acquiring images of polystyrene microspheres with 5 μm diameter and the wing of a green lacewing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.