Abstract

Biomechanical changes at cellular level can dramatically affect living organisms in both aviation and space applications. Weightlessness induces morphological alteration of cells, which leads to tissue loss. Therefore, scientists have been studying the effect of weightlessness using cell culture based biological experiments using conventional microscopes. However, strict requirements regarding cost, weight and functionality limit the use of conventional microscopes in space environment. Lensless digital in-line holographic microscopy enables to use low-weight, low-cost and robust elements, such as a light emitting diode (LED), an aperture and an imaging sensor, instead of bulky, expensive and fragile optical elements, such as lenses, mirrors and filters. This technology offers a high field of view compared to conventional microscopes without affecting the resolution and it is also suitable for remote sensing applications with automated imaging capabilities. Here, we present a portable digital in-line holographic microscopy platform that allows to visualize cells and to analyze their viability in a microfluidic chip. The platform offers microscopic imaging with 1.55 μm spatial resolution, 21.7 mm2field of view and image coloring capability. This platform could potentially play an important role in space biotechnology applications by enabling low-cost, high-resolution and portable monitoring of cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.