Abstract
The Cosmic Microwave Background (CMB) radiation lensing is a promising tool to study the physics of early universe. In this work we probe the imprints of deviations from isotropy and scale invariance of primordial curvature perturbation power spectrum on CMB lensing potential and convergence. Specifically, we consider a scale-dependent hemispherical asymmetry in primordial power spectrum. We show that the CMB lensing potential and convergence and also the cross-correlation of the CMB lensing and late time galaxy convergence can probe the amplitude and the scale dependence of the dipole modulation. As another example, we consider a primordial power spectrum with local feature. We show that the CMB lensing and the cross-correlation of the CMB lensing and galaxy lensing can probe the amplitude and the shape of the local feature. We show that the cross correlation of CMB lensing convergence and galaxy lensing is capable to probe the effects of local features in power spectrum on smaller scales than the CMB lensing. Finally we showed that the current data can constrain the amplitude and moment dependence of dipole asymmetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.