Abstract

This work presents a novel lensed plastic optical fiber (POF), efficiently coupled with a light source. A convexo-concave plastic lens (CCPL) was bound to a flat-end plastic optical fiber using laser transmission welding (LTW) to form a convexo-concave-shaped fiber endface (CCSFE). The novel lensed plastic optical fiber has a longer working distance and a higher coupling efficiency than conventional lensed plastic optical fibers. 850 nm fiber is often used in high-power 2.5 Gb/s transmission rate. Experimental POF is perfluorinated POF, 62.5–500 μm diameter, 850∼1300 μm wavelength, 10 dB/km power loss rate, 2.5 Gb/s transmission rate. Because of the small diameter of POF, it is difficult to couple between the light source and POF. Therefore, it is important to develop a lensed fiber structure to increase the coupling efficiency. Experiments indicate that the coupling efficiency between a laser diode at a wavelength of 850 nm and a graded-index POF is as high as 85% with a long working distance of 250 μm. The measured tolerance, in relation to the lateral and vertical displacements and tilt, are satisfactory for practical active alignment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.