Abstract
In this paper, a lens learning sparrow search algorithm (LLSSA) is proposed to improve the defects of the new sparrow search algorithm, which is random and easy to fall into local optimum. The algorithm has achieved good results in function optimization and has planned a safer and less costly path to the three-dimensional UAV path planning. In the discoverer stage, the algorithm introduces the reverse learning strategy based on the lens principle to improve the search range of sparrow individuals and then proposes a variable spiral search strategy to make the follower's search more detailed and flexible. Finally, it combines the simulated annealing algorithm to judge and obtain the optimal solution. Through 15 standard test functions, it is verified that the improved algorithm has strong search ability and mining ability. At the same time, the improved algorithm is applied to the path planning of 3D complex terrain, and a clear, simple, and safe route is found, which verifies the effectiveness and practicability of the improved algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.