Abstract

The diagnosis of urinary tract infection (UTI) currently requires precise specimen collection, handling infectious human waste, controlled urine storage, and timely transportation to modern laboratory equipment for analysis. Here we investigate holographic lens free imaging (LFI) to show its promise for enabling automatic urine analysis at the patient bedside. We introduce an LFI system capable of resolving important urine clinical biomarkers such as red blood cells, white blood cells, crystals, and casts in 2 mm thick urine phantoms. This approach is sensitive to the particulate concentrations relevant for detecting several clinical urine abnormalities such as hematuria and pyuria, linearly correlating to ground truth hemacytometer measurements with R 2 = 0.9941 and R 2 = 0.9973, respectively. We show that LFI can estimate E. coli concentrations of 10 3 to 10 5 cells/mL by counting individual cells, and is sensitive to concentrations of 10 5 cells/mL to 10 8 cells/mL by analyzing hologram texture. Further, LFI measurements of blood cell concentrations are relatively insensitive to changes in bacteria concentrations of over seven orders of magnitude. Lastly, LFI reveals clear differences between UTI-positive and UTI-negative urine from human patients. LFI is sensitive to clinically-relevant concentrations of bacteria, blood cells, and other sediment in large urine volumes. Together, these results show promise for LFI as a tool for urine screening, potentially offering early, point-of-care detection of UTI and other pathological processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.