Abstract
Nano-indentation hardness as a function of bilayer period has been measured for sputter-deposited Cu–Nb multilayers. For this face-centered cubic/body-centered cubic system with incoherent interfaces, we develop dislocation models for the multilayer flow strength as a function of length scale from greater than a micrometer to less than a nanometer. A dislocation pile-up-based Hall–Petch model is found applicable at the sub-micrometer length scales and the Hall–Petch slope is used to estimate the peak strength of the multilayers. At the few to a few tens of nanometers length scales, confined layer slip of single dislocations is treated as the operative mechanism. The effects of dislocation core spreading along the interface, interface stress and interface dislocation arrays on the confined layer slip stress are incorporated in the model to correctly predict the strength increase with decreasing layer thickness. At layer thicknesses of a few nanometers or less, the strength reaches a peak. We postulate that this peak strength is set by the interface resistance to single dislocation transmission, and calculate the transition from confined layer slip to an interface cutting mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.