Abstract
SummaryChromosome alignment at the spindle equator promotes proper chromosome segregation and depends on pulling forces exerted at kinetochore fiber tips together with polar ejection forces. However, kinetochore fibers are also subjected to forces driving their poleward flux. Here we introduce a flux-driven centering model that relies on flux generated by forces within the overlaps of bridging and kinetochore fibers. This centering mechanism works so that the longer kinetochore fiber fluxes faster than the shorter one, moving the kinetochores toward the center. We develop speckle microscopy in human spindles and confirm the key prediction that kinetochore fiber flux is length dependent. Kinetochores are better centered when overlaps are shorter and the kinetochore fiber flux slower than the bridging fiber flux. We identify Kif18A and Kif4A as overlap and flux regulators and NuMA as a fiber coupler. Thus, length-dependent sliding forces exerted by the bridging fiber onto kinetochore fibers support chromosome alignment.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.