Abstract
The phonon dispersion, density of states, Gr\"{u}neisen parameters, and the lattice thermal conductivity of single- and multi-layered boron nitride were calculated using first-principles methods. For the bulk {\it h}-BN we also report the two-phonon density of states. We also present simple analytical solutions to the acoustic vibrational mode-dependent lattice thermal conductivity. Moreover, computations based on the elaborate Callaway-Klemens and the real space super cell methods are presented to calculate the sample length and temperature dependent lattice thermal conductivity of single- and multi-layered hexagonal boron nitride which shows good agreement with experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.