Abstract

According to the ICP (infancy-childhood-puberty) growth model, statural growth can be divided into three partially superimposed components assumed to represent different physiologic mechanisms. This model predicts a sudden acceleration of length velocity (LV) at the onset of the childhood component around 9 months. The existence of such an infancy-childhood growth spurt has not yet been firmly corroborated by epidemiological studies. In the present study length measurements were made at the target ages of 1, 3, 6, 9, 12, 15, 18 and 24 months in a birth cohort of 2034 infants. In order to check whether length growth showed a continuous smooth pattern, different mathematical models were fitted to the individual growth curves. The models included Count and Guo functions, 5th order polynomial and combinations of 5th order polynomial with the logarithmic term of the Count function and the square root term of the Guo function. We showed that in boys and girls there is a small but systematic lack of fit of the mathematical modeling, due to a sudden acceleration of LV around 9 months. In addition there was an increase in variation of attained length at this age. Comparison of unbalanced ANOVA models with and without addition of dummy variables for the target ages confirmed that there was an acceleration around 9 months that, if corrected for, leads to a significantly improved model fit (likelihood ratio test p < 0.0001). In absolute terms of LV, the misfit at 9 months was not greater than 0.5 cm/year on average. We conclude that the results of this study support the existence of a late infancy growth spurt. In our opinion, however, the magnitude of the phenomenon does not legitimate construction and use of discontinuous growth references such as the ICP reference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call