Abstract

AbstractIn engineering seismology, the time‐averaged shear‐wave velocity (VS) of the upper 30 m of the crust (VS30) is the primary parameter used in ground‐motion models to predict seismic site effects. VS30 is typically derived from in situ recordings of VS, although proxy‐based approaches (using geologic and/or geomorphometric classifications) are provisionally adopted when measurement‐based VS30 are sparse or not readily available. Despite the acceptance of proxy approaches, there are limited studies that examine the empirical relationships between VS30 and topographic attributes measured from various length scales and different resolutions of the digital elevation model. In this study, we examine the relationships between compiled VS30 measurements from 218 sites in southern California and topographic metrics of slope and relief measured over various length scales. We find that the correlations between topographic metrics and VS30 are weak but statistically significant. The correlations are improved when topographic slopes and relief are measured over length scales longer than typical hillslopes and VS30 sites are separated by different geologic groups. This is likely because VS30, especially on the rock sites, is better reflected in topographic metrics that capture large‐scale topographic relief, as well as landscape positions such as hilltops and valley bottoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.